
Mistelix

A DVD authoring tool for GNU/Linux
desktop systems

 5th January 2009

Student: Jordi Mas i Hernàndez

Tutor: Jordi Ceballos Villach

This project is dedicated to the hundreds of free and open source hackers that invest their time in
making all the infrastructure that made this project possible.

I want also to thank to the UOC their flexibility given to me to develop a project that is based on
Linux (instead of Windows), that runs of top of Mono (instead of Microsoft .Net), that is written in
English and that its outputs are open source.

2/59

Table of contents

1. Introduction..6
1.1 Introduction ...6
1.2 Objectives and scope..6
1.3 Open source..6
1.4 Project justification...7
1.5 Project deliverables...7
1.6 Project risks...8
1.7 Project plan..11
1.8 Installation..14

2. Technologies ...17
2.1 The DVD standard...17
2.2 DVD disc physical standards...17
2.3 DVD Video...18

2.3.1 Features..18
2.3.2 Technical characteristics...19

2.4 Platform ...20
2.4.1 Mono...20
2.4.2 Mono.Addins...20
2.4.3 Autoconf and automake...21
2.4.4 MonoDevelop IDE...21

2.5 User interface libraries ..22
2.5.1 GTK...22
2.5.2 Cairo..23
2.5.3 Glade...23
2.5.4 Gettext...23

2.6 Multimedia libraries..23
2.6.1 GStreamer...23
2.6.2 ffmpeg...24

2.7 External tools...24
2.7.1 Dvdauthor..25
2.7.2 Spumux...25

3. System Analysis...26
3.1 Uses cases..26

3.1.1 Creating slideshow photo DVD..26
3.1.2 Modifying an already existing slideshow..26
3.1.3 Creating a DVD with recorded videos ...27
3.1.4 Creating a DVD with slideshows and recorded videos ...27

3/59

3.1.5 A user wants to translate the application...28
3.1.6 A user wants to extend the application..28

3.2 Functional requirements ...29
3.3 Non-functional requirements ..29

4. Application architecture..31
4.1 Components description..31

4.1.1 Library usage description..32
4.1.2 External tools usage description..32

4.2 libmistelix...33
4.2.1 General overview..33
4.2.2 Mistelixvideo source GStreamer pluggin...33
4.2.3 Communication between Mistelix and the multimedia stack..34

4.3 Background process scheduler...35
4.4 Themes..36
4.5 Extending the application..36

4.5.1 Introduction..36
4.5.2 What can be extended...36
4.5.3 Anatomy of an extension...37

4.6 Translations...37
5. User interface design...38

5.1 User interface description..38
5.2 Creating a new project...38
5.3 Adding a slideshow..39
5.4 Adding videos..41
5.5 Selecting a theme..42
5.6 Authoring the menus..43
5.7 Building the project..44
5.8 Preferences..44
5.9 Extensions...45

6. Implementation...47
6.1 Project hosting...47
6.2 Statistics from Ohloh..47
6.3 Mistelix classes ...48

6.3.1 Mistelix.Datamodel namespace...48
6.3.2 Mistelix.Widgets namespace...49
6.3.3 Mistelix.Dialogs namespace..50
6.3.4 Mistelix.Backends namespace..51

7. Further development and plans...52
7.1 Publishing Mistelix 0.1...52

7.1.1 Software enhancements..52

4/59

7.1.2 Packaging..53
7.1.3 Mistelix.org web site..53
7.1.4 Legal strategy..54

7.2 Future versions (beyond 0.1)...55
8. Conclusions..57
9. Bibliography...60

5/59

1. Introduction

1.1 Introduction
This document describes Jordi Mas i Hernàndez final year project proposal as computer science
master degree student at the Open University of Catalonia (UOC1).

The project is called Mistelix, an open source DVD authoring tool for GNU/Linux systems.

1.2 Objectives and scope
The objective of this project is to create a basic fully functional DVD authoring tool for GNU/Linux
systems.

Mistelix project objectives in the scope of the final year project are:

• Build an application based on GTK that allows to create easily to any novice user DVDs in
Linux systems, focusing on producing two types of DVD:

• A DVD with slides of images (slideshows).
• A DVD with videos.

• Provide the gluing to allow Mistelix to operate audio and video codecs and muxers for DVD
authoring.

• Deliver a platform that the user can extend using plug-ins:
• Transitions for slideshows (provide some effects as reference implementation).
• Themes support
• To connect to external sources to import content from other sources, like F-Spot2 (a

client side application) or web based systems like Flickr3.
• Provide project management functions for creating the DVD projects that are stored locally.
• Integration with dvd-author and spumux for DVD file system production.
• Be localizable to any language (using Gettext).

The scope of the project within the UOC final project is limited by the time frame of the project
(starting in early September 2008 and finishing in early January 2008). However there are plans
beyond the scope of this project to keep working on Mistelix. These plans are described in the
section Further development and plans section of this document.

1.3 Open source
Mistelix is developed in an open manner using Google Code hosting4 and its software deliverables

1 http://www.uoc.edu
2 http://f-spot.org/
3 http://www.flickr.com/
4 http://code.google.com/hosting/

6/59

http://www.uoc.edu/
http://code.google.com/hosting/
http://www.flickr.com/cameras/
http://f-spot.org/

are published under the Mozilla Public License (MPL) 5 open source license. The MPL is the
license used for the Mozilla Application Suite, Mozilla Firefox, Mozilla Thunderbird and other
Mozilla free software.

Unlike other open source licenses, the code under the MPL may be combined with proprietary files
in one program. This even allows to build closed source commercial software derivated from MPL
licensed applications.

The MPL license has been certified as open source by the Open Solution Initiative6 and as a free
software license by the Free Software Foundation7.

1.4 Project justification
This project meets the academia requirements as a final year project:

• It represents a complete software project, covering a full development cycle, including
functional description, architecture, implementation or the deployment among users.

• The project outputs are open source and pubically available which provides a benefit for the
society, other students and GNU/Linux users.

• The project uses a broad number of technologies:

◦ Build system tools (automake)

◦ GTK and Glade for user interface building

◦ Systems level program (C library) and high level (using C#)

◦ Video and audio encoding and muxing (Gstreamer and ffmpeg libraries)

◦ Extensibility (using Mono.Addins) and translation friendly (Gettext)

• The project will continue after the formal ending of the final year project period and we will
be further developed by his author and other open source hackers.

1.5 Project deliverables
This project has produced the following deliverables:

• A description of the architecture of the solution.

• A build system based on Autoconf that builds the application (218 lines of source code).

• Mistelix, the main application written in C#, Glade and GTK (6.058 lines of source code).

• libmistelix, a C library that glues Mistelix application with the underlying codec
infrastructure to encode video and audio (431 lines of C source code).

5 http://en.wikipedia.org/wiki/Mozilla_Public_License
6 http://www.opensource.org/
7 http://www.fsf.org

7/59

http://www.fsf.org/
http://www.opensource.org/
http://en.wikipedia.org/wiki/Mozilla_Public_License

• Mistelixvideosrc a Gstreamer plug-in that receives a list of images from the Mistelix
application and puts them on the Gstreamer pipeline to allow them to be processed by the
Gstreamer infrastructure (1285 lines of C source code)

• Two effect transition extensions (from slide to slide). Written in C#.

• Three default themes for creating DVDs.

1.6 Project risks
Mistelix is already free software8. However, some risks were identified when the project was
started that could affect to its potential distribution have to be cleared before it can be widely
distributed.

Risk: Software patents
Description A patent is the grant of a property right covering an invention. The right conferred

by the patent gives its owner the right to exclude others from making, using, offering
for sale, selling or importing the invention in the absence of a license.

In some cases, standards and other technology platforms consist of many patents
owned by many patent owners, the number of licenses required of users may be too
costly and inefficient for users to negotiate. This is often referred to as a patent
thicket.

MPEG2 video format is heavily protected by patents, actually some sources have
counted up 640 to patents. These patents cover different aspects of the video, audio
encoding, decoding, transmission, recording and retrieval. The patent holders are
companies like Alcatel-Lucent, Canon Inc., Columbia University, Fujitsu, LG
Electronics, Matsushita, Mitsubishi, Philips. There is a full list9 of patents covering
the MPEG2 standard.

To simplify the licensing process, a patent licensing authority for MPEG2 has
established. The MPEG Licensing Authority10 licenses the patents related to MPEG2
technologies. This licensing authority keeps a list of the large portfolio of patents11
that they manage.

Usually vendors implementing MPEG2 (set-top boxes, DVD players, television
receivers/decoders, software, etc) software to encode and decode MPEG2 format
pay around $2.5 (see licensing summary12) for every customer that uses MPEG2
related technologies. These $2.5 are patent royalties are paid to the MPEG Licensing

8 http://code.google.com/p/mistelix/
9 http://en.wikipedia.org/wiki/MPEG-2#Patent_holders
10 http://www.mpegla.com/
11 http://www.mpegla.com/m2/m2-att1.pdf
12 http://www.mpegla.com/m2/m2web_licenseterms.ppt

8/59

http://www.mpegla.com/m2/m2web_licenseterms.ppt
http://www.mpegla.com/m2/m2-att1.pdf
http://www.mpegla.com/
http://en.wikipedia.org/wiki/MPEG-2#Patent_holders
http://code.google.com/p/mistelix/

Authority.

These patent royalties causes MPEG2 to be not compatible with the
distribution of free software. Most of the Linux distributions have currently no
support for MPEG2. See as examples Fedora Linux distribution policy13 or the
OpenSuse Linux format restrictions page14.

Companies like Fluendo for example sell codecs15 for MPEG for end users or 7
euros, however they do not produce MPEG2 encoders that can be used for DVD
authoring.

In the section Legal Strategy of this document, I described the strategy defined to
mitigate the patent risks.

Risk: DVD format restrictions
Description DVD Video format uses a very strict subset of the MPEG2 format. DVD authoring

tools that do not stick to these restrictions generate DVDs that users not be able to
reproduced in all DVD players.

The restrictions affect areas like:

• The video resolutions supported for encoding.
• The video aspect rations supported.
• The video and audio encoding mechanisms.

Not all the MPEG2 encoded files produced can be used for recording DVDs. They
need special characteristics that a libraries systems support.

Action Make sure that the libraries selected produce MPEG2 that can play properly in most
DVD players.

Risk: High dependency on third party modules
Description Mistelix builds up in a set of libraries and components that are largely used in the

open source space, like Mono, GTK, Glade, Mono.Addins, autotools, Cairo.

However, libraries like:

13 http://fedoraproject.org/wiki/Multimedia/DVD
14 http://en.opensuse.org/Restricted_Formats
15 https://shop.fluendo.com/

9/59

https://shop.fluendo.com/
http://en.opensuse.org/Restricted_Formats
http://fedoraproject.org/wiki/Multimedia/DVD

• dvdauthor or spmux
• ffmpeg
• Gstreamer

are somehow redundant and some of them have to be drop as the project progresses
and we shoud consolidate different needs in a single library.

Some of these libraries have different conditions for their distribution. It is important
that they are compatible with Mistelix license and patent strategy.

Action Try to minimize the number of libraries used before releasing the software.

10/59

1.7 Project plan
In this section I describe the tasks that have been performed to complete the project. All these tasks
have been synchronized with the deliveries required by UOC in order to evaluate the progress of the
project.

In the next table there is the high level task plan and schedule for the project.
Task name Duration Start End Predecessor

1

2 Analysis 22 days Mon 01/09/08 Tue 30/09/08

3 Project proposal 15 days Mon 01/09/08 Fri 19/09/08

4 Project at Google Forge 1 day Mon 19/09/08 Fri 19/09/08

5 Project plan 5 days Mon 22/09/08 Sat 27/09/08 4

6 PAC1 completed 0 days Tue 30/09/08 Tue 30/09/08 5,3

7 Prototypes 19 days Wed 01/10/09 Mon 27/10/08

8 Functional specifications 5 days Wed 01/10/08 Tue 07/10/08 6

9 Architecture description 5 days Wed 08/10/08 Tue 14/10/08 8

10 User interface mock-ups 5 days Wed 15/10/08 Tue 21/10/08 9

11 PAC2 completed 0 days Mon 27/10/08 Mon 27/10/08 10

12 Development 60 days Mon 22/09/08 Fri 12/12/08

13 Build and dependency system 60 days Mon 22/09/08 Fri 12/12/08

14 Mistelix 60 days Mon 22/09/08 Fri 12/12/08

15 Lib Mistelix 60 days Mon 22/09/08 Fri 12/12/08

16 gstreamer plug-in 60 days Mon 22/09/08 Fri 12/12/08

17 PAC3 completed 0 days Fri 12/12/08 Fri 12/12/08 13,14,15,16

18 Report and presentation 35 days Mon 15/12/08 Fri 30/01/08

19 Build final report 10 days Mon 15/12/08 Fri 26/12/08

20 Prepare video presentation 5 days Mon 15/12/08 Fri 19/12/08

21 Final delivery 1 days Wed 07/01/08 Wed 07/01/08 19,2

22 Class group discussion 5 days Mon 27/01/08 Fri 30/01/08

During the the analysis phase started on the 1st of September the following tasks were executed:

Task name Description
Project proposal After evaluating many different ideas for the final year project I

decided to do a DVD authoring tool for GNU/Linux systems.
During this phase I crafted a proposal for my tutor where I exposed
the idea of this project, the scope and main milestones. The project
was accepted at the end of September 2008.

Project at Google Forge I registered Mistelix project in the Google Forge collaborative web

11/59

platform. This made possible to use Subversion source control
system since the beginning of the project.

Project plan A project plan is created taking into account deliverables required
by UOC in order to evaluate the progress of the project and making
sure that the scope of the project could be accomplish during the
given time frame.

During the prototype phase started on the 1st of October the following tasks were executed:

Task name Description
Functional specifications I focused on doing the functional specifications for the application

by analyzing the features offered by some products in other
platforms. Afterwards, I wrote some use cases that capture what I
defined as the minimum set of requirements that the application
must accomplish.

Architecture description Once the requirements were defined, I focused on defining the
architecture. This task included analyzing the different libraries and
external tools available and selecting the best ones for the project.

 User interface mock-ups I crafted the mock-ups for the user interface, that is also one of the
key aspects of the project since it targets end-users. The mock-ups
take advantage of the capabilities of user interface libraries used. It
is strongly based on a single document and drag and drop
approach,

During the development phase started on the 22nd of November the following tasks were executed:

Task name Description
Build and dependency system This includes configuring the automake and autoconf systems for

the project and building the configure.in16 file for Mistelix. In this
file all the dependencies for the application are defined, such as the
Mono environment, the different libraries (gtk-sharp, mono-addins,
etc) and the external tools required.

Mistelix This the development of the main application done using C#. This
includes four main areas:

• Core: main application classes

• Backends: classes that interface with external tools

16 http://code.google.com/p/mistelix/source/browse/trunk/configure.in

12/59

http://code.google.com/p/mistelix/source/browse/trunk/configure.in

• Datamodel: classes that define the application data model

• Dialog: user interface dialog classes

• Widgets: application user interface widgets

Libmistelix libmistelix is a C library that glues the Mistelix application with
the underlying codec infrastructure provided by GStreamer.

The objectives of libmistelix are to make ease to replace the
multimedia backends in the future if patents problems arise or if we
decide to use another multimedia backend different to GStreamer

Gstreamer plug-in To make the communication possible with Gstreamer, Mistelix
provides a GStreamer plug-in written in C called mistelixvideosrc.
The objective of this plug-in is to receive a list of images from the
Mistelix applications and put them on the Gstreamer pipeline to
allow them to be processed by the Gstreamer infrastructure (e.g
converting it to video).

During the report and presentation started on the 15th of December the following tasks were
executed:

Task name Description
Build final report Write this near 60 page document that is a complete report for the

project that covers all the phases of the project from its inception to
its delivery.

Prepare video presentation Record the video presentation that explains with slideshows the
main objectives, milestones and conclusions of the project with
also a recorded demo of the application.

Final delivery To deliver the final outputs of the project to UOC for the final
evaluation.

Class group discussion Participate in the class discussion to solve any potential doubt
about this project.

13/59

1.8 Installation
Mistelix requires a GNU/Linux system, like Ubuntu17, Fedora18, OpenSuse19 or other modern GNU/
Linux distribution, with the following packages installed:

• Mono 1.1.7 or higher

• GTK sharp 2.8 or higher

• gnome-sharp 2.8 or higher

• glade-sharp 2.8 or higher

• gstreamer-0.10 version 10.3 or higher

• gstreamer-base-0.10 10.3 or higher

• gstreamer-plugins-base-0.10 10.3 or higher

• mono-addins 0.3 or higher

• mono-addins-setup 0.3 or higher

• mono-addins-gui 0.3 or higher

• dvdauthor 0.6 or higher

In RPM based systems like Fedora o Suse you can use the command line rpm20 to install packages
and in Ubuntu and Debian systems you can use apt-get21.

Additionally, the gst-ffmpeg22 GStreamer plug-in has to be built from sources. This due to two
issues:

1) Most of the standard gst-ffmpeg packages distributed with Linux have the MPEG2 codecs
(required by Mistelix) disabled to avoid patents claims in countries were patents are enforceable.

See for example how in the standard gst-ffmpeg Debian package23 they disable H26, mpeg2video
and MPEG4 codecs in the following script fragment:

strip/clean the code from potentially dangerous patented code

for codec in 'h26.*' mpeg2video mpeg4 'msmpeg4.*'; do

 F=libavcodec/allcodecs.c

17 http://www.ubuntu.com/
18 http://fedoraproject.org/
19 http://www.opensuse.org
20 http://linux.die.net/man/8/rpm
21 http://linux.die.net/man/8/apt-get
22 http://gstreamer.freedesktop.org/modules/gst-ffmpeg.html
23 http://archive.ubuntu.com/ubuntu/pool/main/f/ffmpeg-debian/ffmpeg-debian_0.svn20080206-12ubuntu3.diff.gz

14/59

http://archive.ubuntu.com/ubuntu/pool/main/f/ffmpeg-debian/ffmpeg-debian_0.svn20080206-12ubuntu3.diff.gz
http://gstreamer.freedesktop.org/modules/gst-ffmpeg.html
http://linux.die.net/man/8/apt-get
http://linux.die.net/man/8/rpm
http://www.opensuse.org/
http://fedoraproject.org/
http://www.ubuntu.com/

 sed -i "/REGISTER_ENCODER.*\\<$codec\\>/d" $F

 sed -i "s/REGISTER_ENCDEC\\(.*\\<$codec\\>\\)/REGISTER_DECODER\\1/" $F

 F=libavcodec/*.c

 sed -i "/AVCodec *${codec}_encoder *=/,/^[[:space:]]*}/d" $F

done

2) The gst-ffmpeg plugin does not expose all the muxers available in the ffmpeg backend needed by
Mistelix. More precisely, the ffmux_dvd muxer.

Before building gst-ffmpeg from sources the following patch should be applied:

diff -u -r1.172 gstffmpegcodecmap.c

--- ext/ffmpeg/gstffmpegcodecmap.c7 Nov 2008 11:43:42 -0000 1.172

+++ ext/ffmpeg/gstffmpegcodecmap.c 3 Dec 2008 10:00:09 -0000

@@ -2117,7 +2117,7 @@

 *video_codec_list = mp4_video_list;

 *audio_codec_list = mp4_audio_list;

- } else if (!strcmp (format_name, "mpeg")) {

+ } else if (!strcmp (format_name, "mpeg") || !strcmp (format_name, "dvd")) {

 static enum CodecID mpeg_video_list[] = { CODEC_ID_MPEG1VIDEO,

 CODEC_ID_MPEG2VIDEO,

 CODEC_ID_H264,

This patch basically enables the ffmux_dvd muxer in gst-ffmpeg needed by Mistelix.

Once this patch has been applied, you have to build gst-ffmpeg from sources you follow these steps:

1) Install following additional packages:

• cvs

• gcc

• libgstreamer0.10-dev

2) Download the latest ffmpeg source code using CVS source control system:

15/59

cvs -d:pserver:anoncvs@anoncvs.freedesktop.org:/cvs/gstreamer co gst-ffmpeg

3) Apply the patch to activate the ffmux_dvd muxer.

4) Build and install the plug-in from sources using:

./autogen.sh && make install

once it is compile you can run it by just typing 'mistelix' and the application will start.

16/59

2. Technologies
In this section the technologies involving this project are described briefly. The description includes
DVD related technologies and software libraries and components used to build the application.

2.1 The DVD standard
DVD is the most popular format for delivering multimedia content: films, company presentations,
weddings and others.

The DVD standard is set by an association of 22024 hardware and software manufacturers called
DVD Forum25 that was founded in 1997.

The DVD Forum has two major proposes:

• To establish a single format for each DVD application product, including revisions,
improvements and enhancements for the benefit of consumers and users.

• To promote broad acceptance of DVD products on a worldwide basis, including the
entertainment, consumer electronics and IT industries as well as the general public.

DVD-Video is a standard for storing video content on DVD media. These DVD can be played in
DVD players at home connected to a TV set, video games consoles, personal computers or other
devices.

DVD-Video discs support features like menus, selectable subtitles, multiple camera angles, and
multiple audio tracks.

To produce DVD-Video titles with these features you need to use a DVD authoring tool (like
Mistelix).

The DVD-Video standard does not provide support for slideshows. Authoring tools have to
produce a video from a set of images by their own, since the standard does not support showing
static images or the concept of transitions.

2.2 DVD disc physical standards
DVD disc is a very popular optical disc storage media format defined by the DVD Forum. Its main
uses are video and data storage. Single layer DVDs can store up 4.7 gigabytes and double layer
DVD can store up 8.5GB.

 There are many variations of the DVD disc format, the following ones are the most popular ones:

• DVD-ROM has data that can only be read and not written.

• DVD-R and DVD+R can record data only once and then function as a DVD-ROM.

24 http://www.dvdforum.org/about-memberlist.htm
25 http://www.dvdforum.org

17/59

http://www.dvdforum.org/
http://www.dvdforum.org/about-memberlist.htm

• DVD-RW, DVD+RW and DVD-RAM can both record and erase data multiple times.

Modern DVD players support all these physical variations.

2.3 DVD Video
In this section the features and technical characteristics of the DVD-Video format defined by the
DVD forum are described.

2.3.1 Features
A DVD physical disc can be structured using several logic formats. The most common logic
standard is DVD-Video, defined by the DVD Forum, that is the most popular format used by the
movie industry to distribute films.

A DVD-Video supports the following features:

• Menus. Each disc has a main menu from which the user can navigate the content using his
DVD player remove control. It is possible to have submenus attached to every menu. The
menus are the most important part of a DVD because they are responsible of the user
navigation.

• Subtitles. DVD Video may also include up to 32 subtitle or subpicture tracks in various
languages, including those made especially for the deaf and hearing impaired. They are
stored as bitmap images with transparent background and are shown over the video during
playback.

• Chapters. Chapters are like bookmarks in a video that allow the user to skip or jump to
specific points on the DVD.

• Content protection. Since the DVD is widely use by the movie industry several copy
protection systems have been put in place. The most basic protection is the region code that
restricts the area of the world in which a DVD can be played. There are 8 regions defined in
the world, DVD titles bought in one region (for example United Estates) cannot be
reproduced in other regions (for example Europe). The are other protection systems like
Content Scramble System and derivates to protect the DVD from begin copied.

• Deferent camera angles. It allows to view a video with different camera angles. The films
have to be reordered with multiple cameras to capture all the angles. When the user is
playing the DVD, he can switch from his remote control to different angles.

18/59

In the previous screen capture you can see the DVD Blade Runner main menu. The user can
navigate the different contents (Play, Scenes, and so on) using the remote control.

2.3.2 Technical characteristics
DVD-Video builds on top of already existant standards. To store its content uses the following
standards:

● MPEG-2 to encode video as defined in the ISO/IEC International Standard (ISO 13818) for
digital television. MPEG-2 was conceived as an encoding and compression standard for
broadcast television based on interlaced scanning of images.

● Dolby Digital (AC-3) formats to store audio. Dolby® Digital is a versatile audio
encoding/decoding technology. Dolby Digital technology can transmit mono, stereo (two-
channel), or up to 5.1-channel surround sound.

Many different video resolutions and formats are supported within the DVD-Video standard, but
the most common are:

● PAL (Phase Alternating Line, is a color encoding system) used mainly in Europe and stored
at a resolution of 720x576 pixels. This standard was developed by Telefunken during 1967
and since when has been widely adopted in Europe.

● NTSC (National Television System Committee) used mainly in United States and stored at a
resolution of 720x480 pixels. NTSC is also the name of the U.S. standardization body that
defined the format.

19/59

Main menu of the DVD Blade Runner

DVD authoring is the process of creating a DVD video that can be played on a DVD player. DVD
authoring software must conform to the specifications set by the DVD Forum for the DVD Video
standard.

2.4 Platform
In this section the software that provides the basic infrastructure used to build Mistelix is described.

2.4.1 Mono
Mono26 is an open source implementation of the Microsoft .NET Development Framework led by
Novell.

Mono consists of three groups of components:

1. Core components

2. Mono/Linux/GNOME development stack

3. Microsoft compatibility stack

The core components include the C# compiler, the virtual machine, and the base class libraries.
These components are based on the Ecma-334 and Ecma-335 standards, allowing Mono to provide
a standards compliant, free and open source CLI virtual machine.

The Mono/Linux/GNOME development stack provide tools for application development while
leveraging existing GNOME and free and open Source libraries. These include: GTK for GUI
development, Mozilla libraries for working with the Gecko rendering engine, Unix integration
libraries, database connectivity libraries, a security stack, and the XML schema language RelaxNG.
GTK allows Mono applications to integrate into the Gnome desktop as native applications.

The Microsoft compatibility stack provides a pathway for porting Windows .NET applications to
Linux. This group of components include ADO.NET, ASP.NET, and Windows.Forms, among
others.

2.4.2 Mono.Addins
Mono.Addins is a generic framework for creating extensible applications, and for creating libraries
which extend those applications.

The main features of Mono.Addins are:

• Supports descriptions of add-ins using custom attributes (for simple and common
extensions) or using an xml manifest (for more complex extensibility needs).

• Support for add-in hierarchies, where add-ins may depend on other add-ins.
• Lazy loading of add-ins.
• Provides an API for accessing to add-in descriptions, which will allow building development

and documentation tools for handling add-ins.
• Dynamic activation / deactivation of add-ins at run time.

26 http://www.go-mono.com

20/59

http://www.go-mono.com/

• Allows sharing add-in registries between applications, and defining arbitrary add-in
locations.

• Allows implementing extensible libraries.
• Supports add-in localization.
• In addition to the basic add-in engine, it provides a Setup library to be used by applications

which want to offer basic add-in management features to users, such as enabling/disabling
add-ins, or installing add-ins from on-line repositories.

2.4.3 Autoconf and automake
Automake27 is a programming tool that produces portable makefiles for use by the make program,
used in compiling software. It is made by the Free Software Foundation as one of GNU programs,
and is part of the GNU build system. It is written in the Perl programming language and must be
used with GNU autoconf.

Automake aims to allow the programmer to write a makefile in a higher-level language, rather than
having to write the whole makefile manually. In simple cases, it suffices to give:

• A line that declares the name of the program to build.

• A list of source files.

• A list of command-line options to be passed to the compiler (for example, in which
directories header files will be found).

• A list of command-line options to be passed to the linker (which libraries the program needs
and in what directories they are to be found).

From this information, Automake generates a makefile that allows the user to compile the program,
clean (remove the files resulting from the compilation), install the program in standard directories;
uninstall the program from where it was installed, create a source distribution archive (commonly
called a tarball) and test that this archive is self-sufficient.

Autoconf28 is a tool for producing shell scripts that automatically configure software source code
packages to adapt to many kinds of UNIX-like systems. The configuration scripts produced by
Autoconf are independent of it when they are run.

Together with Automake, Autoconf forms the GNU build system. It comprises several tools like
Autoheader, etc.

2.4.4 MonoDevelop IDE
MonoDevelop29 is an open source integrated development environment (IDE) for the Linux
platform, primarily targeted for the development of software that uses both the Mono and Microsoft
.NET framework.

MonoDevelop integrates features similar to that of Eclipse and Microsoft's Visual Studio such as

27 http://www.gnu.org/software/automake/
28 http://www.gnu.org/software/autoconf/
29 http://www.mono-develop.com/

21/59

http://www.mono-develop.com/
http://www.gnu.org/software/autoconf/
http://www.gnu.org/software/automake/

Intellisense, source control integration, and an integrated GUI and Web designer. MonoDevelop
integrates a GTK GUI designer.

The main features of MonoDevelop are:

• Code Completion. MonoDevelop's intelligent code completion attempts to complete type,
method and field names as you're typing. The IDE will automatically get the class
information from your source code files and from the libraries referenced in your project.

• Class Management. MonoDevelop has a class viewer which allows you to list the classes in
your project, their methods, and properties. Your namespaces are also kept track of to keep
the classes separated.

• Built-in Help. The .NET documentation and the Gtk# documentation are built into
MonoDevelop for easy access.

• Project Support. MonoDevelop comes with built in projects that help get you started with
your console, Gnome# or Gtk# application.

• Add-ins. MonoDevelop has a powerful add-in engine, which together with a modular API
and a complete set of extension points, provides a seamless platform upon which to build
your own development tools. MonoDevelop also provides an Add-in Manager you can use
to install add-ins from on-line repositories.

2.5 User interface libraries
In this section the main user interface libraries used to build Mistelix are described. These are open
source libraries very widely used.

2.5.1 GTK
GTK30 is a cross-platform widget toolkit for creating graphical user interfaces. It is one of the most
popular toolkits for Linux platforms but also works on Microsoft Windows and other systems.

GTK provides several features:

• An object system written in C, complete with inheritance, type checking, and a
signal/callback infrastructure (event driven system). The type and object systems are not
GUI-specific.

• A GtkWidget object written using the object system, which defines the interface GTK’s
graphical components implement.

• A large collection of useful GtkWidget subclasses (widgets); this collection includes labels,
edit controls, trees, comboboxes, and other popular controls.

GTK is used by many popular applications, like the GNOME desktop, Abiword, Inkscape,
Evolution, GIMP and many other open source applications.

30 http://www.gtk.org

22/59

http://www.gtk.org/

2.5.2 Cairo
Cairo31 is a software library used to provide a vector graphics-based, device-independent API for
software developers. It is designed to provide primitives for 2-dimensional drawing across a
number of different backends. Cairo is designed to use hardware acceleration when available.

The Cairo API provides operations similar to the drawing operators of PostScript and PDF.
Operations in Cairo including stroking and filling cubic Bézier splines, transforming and
compositing translucent images, and antialiased text rendering. All drawing operations can be
transformed by any affine transformation (scale, rotation, shear, etc.)

2.5.3 Glade
Glade32 Interface Designer is a graphical user interface builder for GTK, with additional
components for GNOME. Glade is programming language–independent, and does not produce code
for events, but rather an XML file that is then used with an appropriate binding (such as gtkada for
use with the Ada programming language).

2.5.4 Gettext
Gettext33 is the GNU internationalization (i18n) library. It is commonly used for writing
multilingual programs.

Gettext provides the necessary tools to separate easily in external files the parts of the application
that can be translated. Gettext is currently the most popular options for writing localizable
application in the open source space.

2.6 Multimedia libraries
In this section the main multimedia libraries used to build Mistelix are described. These are open
source libraries very widely used.

2.6.1 GStreamer
GStreamer is a pipeline based multimedia framework. GStreamer processes media by connecting a
number of processing elements into a pipeline. Each element is provided by a plug-in. Elements can
be grouped into bins, which can be further aggregated, thus forming a hierarchical graph.

Elements communicate by means of pads. A source pad on one element can be connected to a sink
pad on another. When the pipeline is in the playing state, data buffers flow from the source pad to
the sink pad. Pads negotiate the kind of data that will be sent using capabilities.

31 http://www.cairographics.org/
32 http://glade.gnome.org/
33 http://www.gnu.org/software/gettext/

23/59

http://www.gnu.org/software/gettext/
http://glade.gnome.org/
http://www.cairographics.org/

2.6.2 ffmpeg
ffmpeg34 library can record, convert and stream digital audio and video in numerous formats
including MPEG-2. It includes libavcodec, an audio/video codec library used by several other
projects, and libavformat, an audio/video container mux and demux library.

GStreamer FFmpeg plug-in35 allows to access fmpeg library code. It contains most popular
decoders as well as very fast colorspace conversion elements.

2.7 External tools
In this section the external tools used by Mistelix are described. These are standard open source
tools that help to produce DVDs.

34 http://www.ffmpeg.org/
35 http://gstreamer.freedesktop.org/modules/gst-ffmpeg.html

24/59

This graphic has been created by GStreamer project

http://gstreamer.freedesktop.org/modules/gst-ffmpeg.html
http://www.ffmpeg.org/

2.7.1 Dvdauthor
dvdauthor is a tool that assembles multiple MPEG program streams into a suitable DVD file system
that can be later recorded.

Dvauthor allows to define an XML file with the DVD-Video structure of a DVD (defining menus,
chapters and so on) and produces the DVD-Video file system structure that can be then recorded in
a physical DVD.

2.7.2 Spumux
Spumux generates and multiplexes subtitles into an existing MPEG2. It can be used to generate
menus and subtitles.

Spumux allows to define an XML with subtitles or menu actions and multiplexes then in already
existing video stream.

25/59

3. System Analysis
In this section a system analysis for the problem is performed. A comprehensive list of features and
use cases is provided that helped to define the functional scope that the application covers.

3.1 Uses cases
Use cases are used in software engineering to capture the functional requirements of a system. They
describe the interaction between a user and the system itself. A set of well-defined use cases help to
define a good set of functional requirements. For Mistelix, I have defined some user cases, that help
me to craft the functional specifications.

3.1.1 Creating slideshow photo DVD
A user has a set of pictures from his holidays and wants to create a DVD to give away to family
members and friends:

Case description
● The user has a set of pictures in his hard drive from three different locations

○ The pictures are in JPEG format

○ They may be in high resolution

● The user wants to create a slideshow for every one of three locations

● The user wants to add a song as a background music

● The user expects the application to provide a suitable theme for his needs

● The user should be able to reorder the images

○ To change their position within the editing view

○ To sort them by date on disc

○ To sort them by filename

● The user should be able to delete images already selected

● The user should be to specify the time and transition for every image

● The user wants to burn the final project in a DVD

3.1.2 Modifying an already existing slideshow
A user has author a slideshow and wants to modify it. This is an important case to document since
the slideshows are converted to video. The user should be able to modify the source set of images
and their parameters at any time.

26/59

Case description
● The user should be able to open an already created slideshow

● The user should be able to reorder the images

● The user should be able to delete images already selected

● The user should be able to add new images

● The user should be to change the time and transition for every image

3.1.3 Creating a DVD with recorded videos
A user has a set of videos from a business event and wants to create a DVD to give it to the
attenders.

Case description
● The user has a group of videos in his hard drive

○ These videos are in MPEG2 format

○ They may be not in the right resolution for DVD encoding

● The user wants to create a slideshows for every one of three locations

● The user wants to add a song as a background music for everyone of the locations

● The user expects the application to provide a suitable theme for his needs

● The user wants to burn them the project in a DVD

3.1.4 Creating a DVD with slideshows and recorded videos
A user has a set of videos and slideshows from a wedding and wants to create a DVD to give it to
friends and family.

Case description
The sideshows:

● The user has a set of pictures in his hard drive from one single location

○ The pictures are in JPEG format

○ They may be in high resolution

● The user wants to create a slideshow for every one of three locations

● The user wants to add a song as a background music

● The user expects the application to provide a suitable theme for his needs

● The user wants to burn the final project in a DVD

The videos:

● The user has a group of videos in his hard drive

27/59

○ These videos are in MPEG2 format

○ They may be not in the right resolution for DVD encoding

● The user wants to create a slideshows for every one of three locations

● The user wants to add a song as a background music for everyone of the locations

● The user expects the application to provide a suitable theme for his needs

● The user wants to burn them the project in a DVD

3.1.5 A user wants to translate the application
It is very common in open source that the users want to participate in the development on their
favorite applications. One of the areas that is more easy to get user involve is translation, because it
does not require technical skills and can usually be done without the need of using development
tools (like compilers or an IDE).

Case description
● The user should be able to translate the application using external files

● The user expects these files to be compatible with regular translations tools like translation
memories and glossaries to reuse previous translations

● The user should be able to test the translation without the need of recompiling the
application or dealing with development tools

● The user expects to do the translation using open source tools

3.1.6 A user wants to extend the application.
As we commented before, it is very common in open source that the users want to participate in the
development on their favorite applications.

However, the skills of some developers are limited. It is always convenient to provide mechanisms
to extend the application without the need to understand the full design of the system or having to
recompile the application.

Extensibility is key in open source to be able to build communities of developers around the
applications. Communities that can extend the application original capabilities.

Case description
● Provide a mechanism to extend the application in predefined anchor points without the need

of recompiling it

● To be able to install and test the extensions in easy manner

● That the extensions are binary compatible between different platforms

● To be able to provide a central repository that can serve extensions to users remotely using a
client / server approach.

28/59

3.2 Functional requirements
This list describes the functional requirements that the application should fulfill:

● Project Management

○ Create new projects

■ Indicate output format

■ Default output location

○ Load / Save projects

● Slideshow creation

○ Select images and compose a slideshow

○ Select effects between images

○ Set the slide expose time

○ Sort and reorder the images within the slideshow

● Video elements

○ Able to import videos

● Theme support

○ Able to support multiple themes

● Generate a final DVD from the project

3.3 Non-functional requirements
This list describes the non-functional requirements that the application should fulfill:

● Provide a easy and intuitive user interface suitable for novice users

○ Based on drag and drop operations

○ The application should not block the user interface

○ It should hide the complexity of the components and external tools

● It should provide a large collection of themes based on open licenses

● Extensibility

○ The application set of themes can be extended by third parties

○ It should be possible to the default transitions using plug-ins

○ The user interface should be completely localizable to any language

● The application should support major digital photography, video and audio formats for
importing content

○ JPEG, PNG and TIFF for image importing

29/59

○ MPEG2 for video importing

○ AC and MP3 for audio importing

● Multiplatform. There are many versions of Linux and Unix systems and they run in different
architectures. The system should work in the most popular combinations.

30/59

4. Application architecture
In this section the Mistelix architecture is described. An overview of the different modules of the
application is given, the libraries and external tools used and how all these components work
together to structure the application.

4.1 Components description
This is high level description of all the components that Mistelix uses, including:

● Namespaces (Dialogs, DataModel, etc)

● Libraries (GTK, Cairo etc)

● Externals tools (dvdautor, Spumux, Xine, etc)

31/59

Mistelix component description

4.1.1 Library usage description

Mistelix builds on top of many open source libraries. The table below describes the main libraries
used and which services they provide to the application.

A comprehensive description of these libraries is provided in the previousTechnologies section of
this document.

Library Usage
GTK Used to provide the user interface for the application.

Cairo Used by Mistelix to do advanced drawing in surfaces (like buttons).

GDK Used to load images from different formats (JPEG; GIF) and scale them.

Gettext Mistelix uses Gettext to enable the translation of Mistelix in other languages
using PO files.

Glade Mistelix uses an Glade XML36 file to define it user interface.

Mono Addins Used to extend the slideshow transition effects.

Mono This is the .Net framework implementation.

GStreamer Uses Gstreamer from libmistelix to connect to the different multimedia
backends, like ffmpeg.

ffmpeg Uses ffmpeg to encode MPEG2 files.

4.1.2 External tools usage description
Mistelix builds on top of some open source external tools. The table below describes the main tools
used and which services they provide to the application.

36 http://code.google.com/p/mistelix/source/browse/trunk/src/mistelix.glade

32/59

http://code.google.com/p/mistelix/source/browse/trunk/src/mistelix.glade

A comprehensive description of these external libraries is provided in the previous Technologies
section of this document.

Library Usage
spumux Used to generate DVD buttons into the MPEG2 stream.

dvdauthor Used to generate the final DVD file system.

growisofs Used to convert the DVD into an ISO image that can later be recorded.

Xine Used to preview the final generated DVD.

4.2 libmistelix

4.2.1 General overview
libmistelix37 is a C library, part of the Mistelix project, that glues the Mistelix application with the
underlying codec infrastructure provided by GStreamer.

The objectives of libmistelix are to make ease to replace the multimedia backends in the future if
patents problems arise or if we decide to use another multimedia backend different to Gstreamer. To
achieve this, libmistelix provides a very simple API that encapsulates the functionality provided by
the different codecs and muxers.

As an example, this is a part of the API that allows to create slideshows from a set of images:

int mistelix_slideshow_createstream (const gchar* filename, unsigned int weight, unsigned int
height, unsigned int framesse);

void mistelix_slideshow_add_image (unsigned char* bytes, unsigned int len);

void mistelix_slideshow_add_imagefixed (unsigned char* bytes, unsigned int len, unsigned int
frames);

void mistelix_slideshow_close ();

libmisteix makes the appropriated calls to GStreamer backend to accomplish the different tasks that
have been requested to libmistelix.

4.2.2 Mistelixvideo source GStreamer pluggin
To make the communication possible with Gstreamer, Mistelix provides a GStreamer pluggin
written in C called mistelixvideosrc38. The objective of this plug-in is to receive a list of images
from the Mistelix application and put them on the Gstreamer pipeline to allow them to be processed
by the Gstreamer infrastructure (e.g converting it to a video).

37 http://code.google.com/p/mistelix/source/browse/trunk/libmistelix
38 http://code.google.com/p/mistelix/source/browse/trunk/#trunk/gstreamer

33/59

http://code.google.com/p/mistelix/source/browse/trunk/#trunk/gstreamer
http://code.google.com/p/mistelix/source/browse/#svn/trunk/libmistelix

Mistelix GStreamer source plug-in has a listening TCP/IP deamon that allows it to be operated as a
source pad from Mistelix.

4.2.3 Communication between Mistelix and the multimedia stack
To show how the communication between Mistelix and the multimedia stack works, lets assume
that we are going to produce a slideshow from a set of pictures. The communication process will be
the following:

● Mistelix calls the C library libmistelix. through the class LibMistelix39 using DllImport40.

● It calls the C function mistelix_slideshow_createstream. This function starts a GStreamer
pipeline calling gst_parse_launch gstreamer C API call creating a pipiline and setting up the
following elements:

○ mistelixvideosrc (our pluggin) as the source.

○ ffenc_mpeg2video as the encoder. This is the ffmpeg MPEG2 encoder.

○ filesink as the sink that outputs the final MPEG-2 into disc.

● Once the GStreamer pipeline is created mistelixvideosrc listens to a TCP/IP socket. From
Mistelix, a connection is open to the local socket and a set of images is sent.

● The images are processed by the ffenc_mpeg2video encoder and output into disc by filesink.

39 http://code.google.com/p/mistelix/source/browse/trunk/src/MistelixLib.cs
40 http://msdn.microsoft.com/en-us/library/system.runtime.interopservices.dllimportattribute.aspx

34/59

http://msdn.microsoft.com/en-us/library/system.runtime.interopservices.dllimportattribute.aspx
http://code.google.com/p/mistelix/source/browse/trunk/src/MistelixLib.cs

4.3 Background process scheduler
Modern workstations nowadays have more than a single processor. Mistelix takes an advantage
from multiprocessing by performing on the background operations that can take a long time to
execute. For example:

● Converting videos that are going to be part of the DVD to MPEG2

● Converting sequences of images (slideshows) into MPEG2

● Creating DVD images

There is a class BackgroundTaskCollection41 in Mistelix that implements a priority queue data
structure. Every process that requires large processing is send to the queue for processing. The
application executes them in the background and honors their priority.

41 http://code.google.com/p/mistelix/source/browse/trunk/src/datamodel/BackgroundTaskCollection.cs

35/59

Mistelix communication with the multimedia stack

http://code.google.com/p/mistelix/source/browse/trunk/src/datamodel/BackgroundTaskCollection.cs

On top of this background processing queue, all the user interface elements that perform operations
that require time, like creating thumbnails, are executed in a separated thread to avoid blocking the
user interface using the BackgroundWorker42 class. See for example ProjectElementView43
Mistelix's gadget.

4.4 Themes
Mistelix bundles with a collection of themes based on open licenses that can be a starting point for
authoring the user's DVD.

The themes can be extended using a external XML file that registers all the themes. There is a
Theme class that encapsulates all the functionality around Themes.

4.5 Extending the application
In this section the different ways of extending the application without the need of modifying its
source code directly are described.

4.5.1 Introduction
Mistelix leverages on Mono.Addins framework to provide extensibility capabilities for the
application using extensions.

These extensions are external Microsoft .Net assembly files that Mistelix recognizes at runtime and
uses in defined points of the application. The extensions are developed as stand-alone components,
there is no need to recompile the application or even has access to the source code.

4.5.2 What can be extended
In the file mistelix.addin.xml44 we define the points of the application that can be extend.
…

<ExtensionPoint path="/Mistelix/SlideTransitions">
 <ExtensionNode name="SlideTransitions"

objectType="Mistelix.Transitions.ITransition" />
</ExtensionPoint>
</Addin>

This allows to external extensions to add extra functionality to the application by implementing the
interface ITransition, which defines the transitions between two slides.

42 http://msdn.microsoft.com/en-us/library/system.componentmodel.backgroundworker.aspx
43 http://code.google.com/p/mistelix/source/browse/trunk/src/widgets/ProjectElementView.cs
44 http://code.google.com/p/mistelix/source/browse/#svn/trunk/src

36/59

http://code.google.com/p/mistelix/source/browse/#svn/trunk/src
http://code.google.com/p/mistelix/source/browse/trunk/src/widgets/ProjectElementView.cs
http://msdn.microsoft.com/en-us/library/system.componentmodel.backgroundworker.aspx

4.5.3 Anatomy of an extension
An extension should be a self-contained code. It should provide at least two files:

• The source code of the extension

• A manifest file (XML file) that describes the extension

It may also contain graphics or additional resources required by the plug-in.

To compile the plug-in is as easy as:

gmcs -t:library Opaque.cs -resource:Opaque.addin.xml -rgbrainy.exe

Once the extension is compiled, the assembly containing the extension has to be copied either in
$PREFIX/lib/mistelix/extensions (e.g. /usr/lib/mistelix/extensions) to make it available system-
wide, or in ~/.gnome2/mistelix/addins if the user has no enough rights to install it system-wide.

4.6 Translations
Mistelix uses the Gettext library to enable the translation of Mistelix into other languages using PO
(portable object) files. These are text files that are very simple to edit and allow to localize
Misteli'x user interface.

For example, the PO file for the Catalan translation45 looks like:

#: ../src/mistelix.glade.h:1
msgid "Output Directory"
msgstr "Directori de sortida"

Every translation is stored in a separated PO file that contains an entry for the original string in
English and the translated string.

Users can add translations very easily by editing the LINGUAS46 file and adding a PO file
corresponding to a new language.

45 http://code.google.com/p/mistelix/source/browse/trunk/po/ca.po
46 http://code.google.com/p/mistelix/source/browse/trunk/po/LINGUAS

37/59

http://code.google.com/p/mistelix/source/browse/trunk/po/LINGUAS
http://code.google.com/p/mistelix/source/browse/trunk/po/ca.po

5. User interface design
In this section the user interface mockups of the application are described.

5.1 User interface description
Mistelix uses a standard window with a menu as a main user's working area. This window is shown
when the application is loaded and is the starting point of all the user actions.

The main window has three working areas:

• The menu bar at the bottom that gives access to the main Mistelix functions.

• The right pane that is the project element selection area, where the project elements are
shown.

• The left pane that is the authoring area, where the user drops the elements that compose the
main DVD menu.

5.2 Creating a new project
The new project dialog is used to start a new DVD authoring project and it available from the main

38/59

Mistelix's main user interface screen

menu (File → New Project).

The user can specify the project name, output directory, where the DVD file system will be
generated and the video format.

5.3 Adding a slideshow
Users can add new slideshows using the Add Slideshow button from the main screen (see the user
interface description section).

A slideshow is a key part of the user interface because allows the user to select a set of pictures a
build a slideshow using a specific set of parameters.

39/59

Mistelix's new project creation dialog box

The dialog box is divided in the following areas:

● At the right-top, there is a directory tree that allow users to navigate their hard-drive
directory structure. When the directory is changed, the set of images available is loaded in
the view below.

● At the top-left, there is a treeview47 (with headers #, image titles) that show the images that
the user has drop from the left view and that are going to be part of the slideshow.

● At the left-bottom, you have a set of controls that allow you to select how the transition
behaves:

○ Slide duration determines the amount of seconds that the slide is shown

○ Transition type selects the transition effect between slides

○ The Up & Down buttons allow to change the order of the images within the slideshow

47 In GTK, treeviews look very similar to listviews in other graphical systems, for example Microsoft Window.

40/59

Mistelix's add slideshow dialog box

● At the right-bottom, you can browse the images that you can drag in the top-left view to
become part of your slide.

Once the user has selected an image or a group of images (in the screen capture, the long light
orange selected row) can use the Slide Duration and Transition type controls to set the time for
exposition of the slide and the transition type used.

Additionally, the left view has a right menu that offers some contextual operations with the images
selected.

5.4 Adding videos
The Add Videos dialog allows the user to select a set of videos and add them as project elements.

41/59

Mistelix's Add slideshow dialog
contextual menu

The dialog box is divided in the following areas:

● At top, there is a directory tree that allow users to navigate their hard-drive directory
structure. When the directory is changed, the set of videos available is loaded in the view
below.

● At the bottom, the user can browse the videos and select them to become project elements.

The user should press the OK button once has selected the videos to add.

5.5 Selecting a theme
Mistelix allows the user to select a theme to base their DVD main menu. This option is available
from Mistelix's main menu (Edit → Select Theme).

42/59

Mistelix's add video dialog box

The theme determines the aspect of the main DVD menu of the authored project.

5.6 Authoring the menus
The main window is Mistelix main authoring area. This is the place where the user can drag the
project elements to create the final authored DVD.

43/59

Mistelix's authoring menus

Mistelix's select them dialog box

The authoring area contains the the following elements:

● The right section of the screen capture (where it says Project elements) the screen is divided
in two additional subareas:

○ The actions toolbar at the top (where is says Add Videos, Add Slideshow) help the user
to add new items to the list of project elements.

○ The project element view (in the screen captures shows tree thumbnails) shows a
preview of the different project elements that you can drop into the project authoring
view.

● The left section of the screen capture (where you can see the Coliseum picture in the
screenshot) is where the user drops the elements that will be part of the DVD.

5.7 Building the project
Once you have finished the authoring the project, you can proceed to build the project. This process
includes generating the necessary videos for the slideshows, menus and so on. From the main
application menu, the option is available at Project → Build.

When the user presses the Generate button the generation process starts and creates the necessary
output files in the project's output directory.

5.8 Preferences

Mistelix has also an application preferences dialog box that allows the user to customize some of
the main application parameters.

44/59

Mistelix's build project dialog box

5.9 Extensions
Mistelix can be extended using external extensions. From the main application menu, users can
select the Edit → Manager extension option and the Extensions Management interface is shown.

45/59

Mistelix application preferences

In the sample screenshot there are two extensions shown. These are bundled as part of Mistelix:
Opaque and OpaqueLines. These extensions can be enabled, disabled or the user can check the
information about them. The Install add-ins button allows to install additional extensions.

46/59

Mistelix Add-in manager dialog box

6. Implementation

6.1 Project hosting
The full Mistelix's development process has been done in an open manner. The project is hosted at
Google Code48, a project hosting service that provides revision control using Subversion, a bug
tracking system, a wiki for documentation, and a file download feature.

All the changes done to the project are documented in the source control system change log49.

6.2 Statistics from Ohloh
Since the project source code of Mistelix is publically available, I have registered the project at
Ohloh50. This service provides statistics about the development of projects by retrieving data from
revision control repositories.

Global statistics on languages used by Mistelix

Detailed statistics on languages used by Mistelix

Language Code Lines Comment
Lines

Comment
Ratio

Blank lines Total lines

C# 3891 1190 23.4% 977 6058
C 1235 167 11.9% 314 1716

48 http://code.google.com/p/mistelix/
49 http://code.google.com/p/mistelix/source/list
50 http://www.ohloh.net/

47/59

Taken from Ohloh Mistelix's analysis page1

http://www.ohloh.net/
http://code.google.com/p/mistelix/source/list
http://code.google.com/p/mistelix/

XML 821 1 0.1% 535 1357
Automake 218 0 0.0% 71 289
Shell script 139 7 4.8% 20 166
Autoconf 91 7 7.1% 40 138
Taken from Ohloh Mistelix's analysis page51

6.3 Mistelix classes
This a description of the main classes that group Mistelix functionality.

6.3.1 Mistelix.Datamodel namespace
The DataModel namespace contains classes that describe the data model used by Mistelix.

51 http://www.ohloh.net/p/mistelix/analyses/latest

48/59

Mistelix's Datamodel namespace

http://www.ohloh.net/p/mistelix/analyses/latest

6.3.2 Mistelix.Widgets namespace
The Mistelix.Widgets namespace contains all the classes that encapsulate the widgets user interace.

6.3.3 Mistelix.Dialogs namespace
The Mistelix.Dialogs namespace contains the classes that encapsulate the dialog boxes user
interface.

49/59

Mistelix's Widget namespace

6.3.4 Mistelix.Backends namespace
The Mistelix.Backends namespace contains classes that encapsulate the different external tools.

50/59

Mistelix's Dialog namespace

Mistelix's Backends namespace

7. Further development and plans
Until now we have been covering Mistelix's deliverables for the UOC final year project. However,
the plans from the very beginning included to further develop Mistelix and make it available to the
GNU/Linux community.

To make this happen, further work has to be carried developing the program, packing it for different
GNU/Linux distributions to easy its dissemination and installation, and more important, a few legal
challenges have to be overcome.

The current plan is to publish Mistelix version 0.1 during May 2009.

7.1 Publishing Mistelix 0.1
This the list of tasks to be performed before making Mistelix publically available.

7.1.1 Software enhancements
Building on top of the work done for the UOC final year project, the following development will be
done to make Mistelix usable to a wider number of users and suitable for distribution.

Major enhancements

• Add support for creating slideshows targeting using Theora52 and Vorbis53 open formats.
These video and audio formats have no know patent claim issues and make possible for
GNU/Linux distributions to include Mistelix with a minimum of functionality. If the users
want to extend the capabilities to generate a DVD compatible media, they will require an
extra plug-in.

• Plug-ins capabilities analysis. Show the user which capabilities are available with the
current set of plug-ins and external tools installed within the user's system. Suggest which
next steps the user has to perform to enable currently disabled functionality.

Minor enhancements

• All the pre-thumbnails should be of the same size that the final image and self-drawn using
Cairo.

• Enhance current theme definition to include audio support.

• Support for aspect ratios (16:9, 4:3). Aspect ratio is the ratio of width to height of a
television set. Traditional television sets have a 4:3 aspect ratio. Wide screen television sets
have a 16:9 aspect ratio.

This development should take about one and half months of a full time developer.

52 http://www.theora.org/
53 http://www.vorbis.com/

51/59

http://www.vorbis.com/
http://www.theora.org/

7.1.2 Packaging
Proper packaging is key to software dissemination in the open and free software world. I have
previous GNU/Linux distribution packaging experience since I packaged software before, most
notably the game gbrainy54 available for all major GNU/Linux distributions.

For legal reasons (see the section below called Legal strategy) Mistelix will be distributed in two
separated parts:

• Mistelix, the main application able to author projects, but only able to build export them in
Theora and Vorbis formats. These are open formats free of patents claims. This part of the
application can be included in any GNU/Linux distribution.

• An additional plug-in that when installed enables MPEG2 capabilities and allows to produce
DVD formats. This part of the application cannot be included in GNU/Linux distributions
and will be distributed from the web site www.mistelix.org.

Initially, Mixtelix will be packaged for the following GNU/Linux distributions:

• Opensuse and Fedora using the free Opensuse build service55. This is an automatic build
system that with the right configuration files produces RPM packages for Fedora and
Opensuse distributions. See for example the gbrainy's packages that I produced56 using this
service. Additionally, when the files are published using this system, they become
automatically available to any Opensuse distribution.

• Ubuntu and Debian packages will be created manually by Siegfried-Angel Gevatter Pujals57,
a Debian and Ubuntu developer that has produced already packages for other pieces of
software that I wrote, like gbrainy.

The plug-in that enables MPEG2 capabilities and allows to produce DVD formats will be available
only from www.mistelix.org web site.

7.1.3 Mistelix.org web site
As part of Mistelix software project a web sited called www.mistelix.org will be created. This site
plays an important role on the distribution of the software. The objectives of the web site are:

• Provide information to Mistelix users about how to user the application (e.g user manual,
how to, etc.)

• Distribute the MPEG-2 codecs that can be a source of patent claims

• Build a developers community around Mistelix project.

◦ Information about how to participate in the development

◦ Information on how to build extensions

54 http://live.gnome.org/gbrainy/
55 http://en.opensuse.org/Build_Service
56 http://download.opensuse.org/repositories/home:/jordimas/
57 https://wiki.ubuntu.com/RainCT

52/59

https://wiki.ubuntu.com/RainCT
http://download.opensuse.org/repositories/home:/jordimas/
http://en.opensuse.org/Build_Service
http://live.gnome.org/gbrainy/

Mistelix.org will be hosted at Universitat de Lleida network after sign up and agreement with their
information technology department.

7.1.4 Legal strategy
As described in the project risks section at the introduction of this document, the major challenge
that Mistelix faces for its distribution is legal (patent claims).

These potential claims can affect three kinds of different people:

• Developers. People that writes Mistelix, initially me but also other people that may join the
project in the future, including also translators or extensions developers.

• Users. People using the software. The patent legislation varies from country to country and
users responsibilities vary depending on the country that the user resides.

• The people hosting the web site mistelix.org, in this case Universitat de Lleida.

Current strategy for distributing Mistelix

Mistelix will be packed for the most popular distributions (Debian, Ubuntu, Fedora and OpenSuse).
The packaged version will not contain the MPEG-2 encoders, only Theora and Vorbis support. The
idea is:

53/59

Mock-up of a design proposal of Mistelix web site

• The user gets Mistelix from the standard distribution repositories for his GNU/Linux
distribution. This version cannot export DVD since it has no MPEG2 encoders. It can only
create open Theora and Vorbis open formats.

• When the user wants to export into a DVD, Mistelix will ask to download additional
software in binary form from www.mistelix.org web site. The downloaded software adds
MPEG-2 encoding capabilities.

• The web site www.mistelix.org will contain a package with "ffmpeg with MPEG-2
encoding support enabled" that will enable this functionality in Mistelix.

• The web site www.mistelix.org server will be placed in Universitat de Lleida
(http://www.udl.es) in Spain.

The rationale is that since the server is located in Spain and software patents are not supposedly to
be legal in Europe, developers and users are safe from patent claims.

I have been working with the Software Freedom Law Center58 to analyze the best distribution
strategy for Mistelix. This center provides free of charge legal representation and related services to
protect and advance free and open source software. They work mainly on the areas of License
Defense and Litigation Support and Legal Consulting.

The Software Freedom Law Center has a very reputed legal team59 led by Eben Moglen60, a very
well know free software advocate.

According emails exchanged with Daniel B. Ravicher, Legal Director at Software Freedom Law
Center “This strategy does pose risk (everything you do poses risk), but it seems to be a reasonable
way to proceed, at least until you receive a direct communication from a patent holder that they
object to such.”
I have decided to proceeded with the publication of Mistelix 0.1 after the necessary enhancements
described as next steps (Software enhancements, packing, publication of the web site, etc) are
completed.

7.2 Future versions (beyond 0.1)
These is a list of major features from a high level respective that can be consider for future versions
of the application.

Major features

• Add support for multilevel DVD menus. Currently one single main menu is supported.

• DVD Subtitle support.

• Voice recoding for slideshows.

58 http://www.softwarefreedom.org/
59 http://www.softwarefreedom.org/about/team/
60 http://en.wikipedia.org/wiki/Eben_Moglen

54/59

http://en.wikipedia.org/wiki/Eben_Moglen
http://www.softwarefreedom.org/about/team/
http://www.softwarefreedom.org/
http://www.udl.es/

• Adobe Flash export export support (probably built on top of swfmill61) for web publishing.

• Microsoft Silverlight export support (built using Moonlight62) for web publishing.

• Support for 3D effects based on OpenGL

61 http://osflash.org/swfmill
62 http://www.mono-project.com/Moonlight

55/59

http://www.mono-project.com/Moonlight
http://osflash.org/swfmill

8. Conclusions
On the tools used
The flexibility of the Microsoft .Net framework has been invaluable. Writing the logic of Mistelix
using a high level language like C#, leveraging on the very power library class that the .Net
framework provides plus been able to interface with low level libraries using marshalling63 and
DllImports64 have been prove to be a very efficient platform to deliver a desktop application.

Working with the Mono platform has been an enriching experience. The level of conformance of
the implementation compared to the official ECMA standards 33465 (C# Language Specification)
and 33566 (Common Language Infrastructure) is almost perfect. Also, the level of conformance with
the Microsoft C# 2.0 compiler and runtime is extremely high. The only shortcoming of the Mono
platform is the lack of a debugger what forces you to use other methods that are widely
documented67. However, a debugger will be available during early 2009.

During the development of Mistelix I used Monodevelop68 as development IDE. It has proved to be
a complete IDE suitable for developing complex applications. On top of the features that you expect
from a modern IDE, Monodevelop also has very good User Interface designed called Stetic69 that
has been very valuable during the creation of Mistelix's user interface.

The fact the tools used during the development are open source is very convenient since it allowed
me to inspect the source code when reading the documentation of an API is not clear enough. It also
made possible to contribute back fixes for some bugs that I found. For example, during the
development of Mistelix I noticed that one of the signatures of the C# bindings for accessing the
Cairo libraries was wrong. I did prepare a fix for the issue and send it to the Mono Subversion
source control repository (see revision 120.29970 in the Mono project).

Using Google Code has been also positive. During the development of this project I use their
Subversion source control system to develop Mistelix that had produced 8671 major code changes
during its development. This has allowed me to keep track of the changes on the source code and
help me when I found regressions bugs.

On the challenges faced
During the development of this project I faced several challenges. Let me summarize the most
important ones:

• Selecting the right multimedia stack. There are many open source libraries that initially
seemed to provide the necessary multimedia features to implement a DVD authoring

63 http://en.wikipedia.org/wiki/Marshalling_(computer_science)
64 http://msdn.microsoft.com/en-us/library/aa984739(VS.71).aspx
65 http://www.ecma-international.org/publications/standards/Ecma-334.htm
66 http://www.ecma-international.org/publications/standards/Ecma-335.htm
67 http://www.mono-project.com/Debugging
68 http://www.monodevelop.com
69 http://monodevelop.com/Stetic_GUI_Designer
70 http://archive.netbsd.se/?ml=mono-patches&a=2008-11&m=9203502
71 http://code.google.com/p/mistelix/source/list

56/59

http://code.google.com/p/mistelix/source/list
http://archive.netbsd.se/?ml=mono-patches&a=2008-11&m=9203502
http://monodevelop.com/Stetic_GUI_Designer
http://www.monodevelop.com/
http://www.mono-project.com/Debugging
http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://www.ecma-international.org/publications/standards/Ecma-334.htm
http://msdn.microsoft.com/en-us/library/aa984739%5C(VS.71%5C).aspx
http://en.wikipedia.org/wiki/Marshalling_%5C(computer_science)>>
>>
endobj

228 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 85.2 238.3 96.8]/A<</Type/Action/S/URI/URI(http://www.mono-project.com/Moonlight)>>
>>
endobj

229 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 96.7 173 108.3]/A<</Type/Action/S/URI/URI(http://osflash.org/swfmill)>>
>>
endobj

230 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 85.2 242.7 96.8]/A<</Type/Action/S/URI/URI(http://en.wikipedia.org/wiki/Eben_Moglen)>>
>>
endobj

231 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 96.7 253.3 108.3]/A<</Type/Action/S/URI/URI(http://www.softwarefreedom.org/about/team/)>>
>>
endobj

232 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 108.3 206.1 119.9]/A<</Type/Action/S/URI/URI(http://www.softwarefreedom.org/)>>
>>
endobj

233 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[96 564 183.5 577.8]/A<</Type/Action/S/URI/URI(http://www.udl.es/)>>
>>
endobj

234 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 85.2 201.6 96.8]/A<</Type/Action/S/URI/URI(https://wiki.ubuntu.com/RainCT)>>
>>
endobj

235 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 96.7 307.7 108.3]/A<</Type/Action/S/URI/URI(http://download.opensuse.org/repositories/home:/jordimas/)>>
>>
endobj

236 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 108.3 220 119.9]/A<</Type/Action/S/URI/URI(http://en.opensuse.org/Build_Service)>>
>>
endobj

237 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 119.8 192.2 131.4]/A<</Type/Action/S/URI/URI(http://live.gnome.org/gbrainy/)>>
>>
endobj

238 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 85.2 167.2 96.8]/A<</Type/Action/S/URI/URI(http://www.vorbis.com/)>>
>>
endobj

239 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 96.7 163.3 108.3]/A<</Type/Action/S/URI/URI(http://www.theora.org/)>>
>>
endobj

240 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 85.2 260.5 96.8]/A<</Type/Action/S/URI/URI(http://www.ohloh.net/p/mistelix/analyses/latest)>>
>>
endobj

241 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 85.2 160 96.8]/A<</Type/Action/S/URI/URI(http://www.ohloh.net/)>>
>>
endobj

242 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 96.7 250.5 108.3]/A<</Type/Action/S/URI/URI(http://code.google.com/p/mistelix/source/list)>>
>>
endobj

243 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 108.3 209.4 119.9]/A<</Type/Action/S/URI/URI(http://code.google.com/p/mistelix/)>>
>>
endobj

244 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 85.2 350.5 96.8]/A<</Type/Action/S/URI/URI(http://code.google.com/p/mistelix/source/browse/trunk/po/LINGUAS)>>
>>
endobj

245 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 96.7 328 108.3]/A<</Type/Action/S/URI/URI(http://code.google.com/p/mistelix/source/browse/trunk/po/ca.po)>>
>>
endobj

246 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 85.2 327.2 96.8]/A<</Type/Action/S/URI/URI(http://code.google.com/p/mistelix/source/browse/#svn/trunk/src)>>
>>
endobj

247 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 96.7 436.3 108.3]/A<</Type/Action/S/URI/URI(http://code.google.com/p/mistelix/source/browse/trunk/src/widgets/ProjectElementView.cs)>>
>>
endobj

248 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 108.3 433 119.9]/A<</Type/Action/S/URI/URI(http://msdn.microsoft.com/en-us/library/system.componentmodel.backgroundworker.aspx)>>
>>
endobj

249 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 85.2 473.5 96.8]/A<</Type/Action/S/URI/URI(http://code.google.com/p/mistelix/source/browse/trunk/src/datamodel/BackgroundTaskCollection.cs)>>
>>
endobj

250 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 96.7 452.7 108.3]/A<</Type/Action/S/URI/URI(http://msdn.microsoft.com/en-us/library/system.runtime.interopservices.dllimportattribute.aspx)>>
>>
endobj

251 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 108.3 366.3 119.9]/A<</Type/Action/S/URI/URI(http://code.google.com/p/mistelix/source/browse/trunk/src/MistelixLib.cs)>>
>>
endobj

252 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 85.2 362.2 96.8]/A<</Type/Action/S/URI/URI(http://code.google.com/p/mistelix/source/browse/trunk/#trunk/gstreamer)>>
>>
endobj

253 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 96.7 336.6 108.3]/A<</Type/Action/S/URI/URI(http://code.google.com/p/mistelix/source/browse/#svn/trunk/libmistelix)>>
>>
endobj

254 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 85.2 364.6 96.8]/A<</Type/Action/S/URI/URI(http://code.google.com/p/mistelix/source/browse/trunk/src/mistelix.glade)>>
>>
endobj

255 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 85.2 304.1 96.8]/A<</Type/Action/S/URI/URI(http://gstreamer.freedesktop.org/modules/gst-ffmpeg.html)>>
>>
endobj

256 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 96.7 167.2 108.3]/A<</Type/Action/S/URI/URI(http://www.ffmpeg.org/)>>
>>
endobj

257 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 85.2 220.5 96.8]/A<</Type/Action/S/URI/URI(http://www.gnu.org/software/gettext/)>>
>>
endobj

258 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 96.7 165.5 108.3]/A<</Type/Action/S/URI/URI(http://glade.gnome.org/)>>
>>
endobj

259 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 108.3 192.2 119.9]/A<</Type/Action/S/URI/URI(http://www.cairographics.org/)>>
>>
endobj

260 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 85.2 148.3 96.8]/A<</Type/Action/S/URI/URI(http://www.gtk.org/)>>
>>
endobj

261 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 85.2 200 96.8]/A<</Type/Action/S/URI/URI(http://www.mono-develop.com/)>>
>>
endobj

262 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 96.7 228.3 108.3]/A<</Type/Action/S/URI/URI(http://www.gnu.org/software/autoconf/)>>
>>
endobj

263 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 108.3 232.2 119.9]/A<</Type/Action/S/URI/URI(http://www.gnu.org/software/automake/)>>
>>
endobj

264 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 85.2 175.6 96.8]/A<</Type/Action/S/URI/URI(http://www.go-mono.com/)>>
>>
endobj

265 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 85.2 175 96.8]/A<</Type/Action/S/URI/URI(http://www.dvdforum.org/)>>
>>
endobj

266 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 96.7 266.4 108.3]/A<</Type/Action/S/URI/URI(http://www.dvdforum.org/about-memberlist.htm)>>
>>
endobj

267 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 85.2 519.6 96.8]/A<</Type/Action/S/URI/URI(http://archive.ubuntu.com/ubuntu/pool/main/f/ffmpeg-debian/ffmpeg-debian_0.svn20080206-12ubuntu3.diff.gz)>>
>>
endobj

268 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 96.7 304.1 108.3]/A<</Type/Action/S/URI/URI(http://gstreamer.freedesktop.org/modules/gst-ffmpeg.html)>>
>>
endobj

269 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 108.3 203.8 119.9]/A<</Type/Action/S/URI/URI(http://linux.die.net/man/8/apt-get)>>
>>
endobj

270 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 119.8 192.2 131.4]/A<</Type/Action/S/URI/URI(http://linux.die.net/man/8/rpm)>>
>>
endobj

271 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 131.4 172.2 143]/A<</Type/Action/S/URI/URI(http://www.opensuse.org/)>>
>>
endobj

272 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 142.9 167.5 154.5]/A<</Type/Action/S/URI/URI(http://fedoraproject.org/)>>
>>
endobj

273 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 154.5 170 166.1]/A<</Type/Action/S/URI/URI(http://www.ubuntu.com/)>>
>>
endobj

274 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 85.2 342.4 96.8]/A<</Type/Action/S/URI/URI(http://code.google.com/p/mistelix/source/browse/trunk/configure.in)>>
>>
endobj

275 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 85.2 173.9 96.8]/A<</Type/Action/S/URI/URI(https://shop.fluendo.com/)>>
>>
endobj

276 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 96.7 241.1 108.3]/A<</Type/Action/S/URI/URI(http://en.opensuse.org/Restricted_Formats)>>
>>
endobj

277 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 108.3 259.1 119.9]/A<</Type/Action/S/URI/URI(http://fedoraproject.org/wiki/Multimedia/DVD)>>
>>
endobj

278 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 85.2 286.9 96.8]/A<</Type/Action/S/URI/URI(http://www.mpegla.com/m2/m2web_licenseterms.ppt)>>
>>
endobj

279 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 96.7 234.1 108.3]/A<</Type/Action/S/URI/URI(http://www.mpegla.com/m2/m2-att1.pdf)>>
>>
endobj

280 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 108.3 171.7 119.9]/A<</Type/Action/S/URI/URI(http://www.mpegla.com/)>>
>>
endobj

281 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 119.8 286.6 131.4]/A<</Type/Action/S/URI/URI(http://en.wikipedia.org/wiki/MPEG-2#Patent_holders)>>
>>
endobj

282 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 131.4 209.4 143]/A<</Type/Action/S/URI/URI(http://code.google.com/p/mistelix/)>>
>>
endobj

283 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 85.2 146.1 96.8]/A<</Type/Action/S/URI/URI(http://www.fsf.org/)>>
>>
endobj

284 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 96.7 183.9 108.3]/A<</Type/Action/S/URI/URI(http://www.opensource.org/)>>
>>
endobj

285 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 108.3 283.8 119.9]/A<</Type/Action/S/URI/URI(http://en.wikipedia.org/wiki/Mozilla_Public_License)>>
>>
endobj

286 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 85.2 198.9 96.8]/A<</Type/Action/S/URI/URI(http://code.google.com/hosting/)>>
>>
endobj

287 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 96.7 163.9 108.3]/A<</Type/Action/S/URI/URI(http://www.flickr.com/cameras/)>>
>>
endobj

288 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[70.2 108.3 137.5 119.9]/A<</Type/Action/S/URI/URI(http://f-spot.org/)>>
>>
endobj

289 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[366.9 601.1 371.9 614.9]/Dest[16 0 R/XYZ 70.9 131.4 0]>>
endobj

290 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[511.6 326.8 516.6 342.6]/Dest[16 0 R/XYZ 70.9 119.9 0]>>
endobj

291 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[396 313 401 326.8]/Dest[16 0 R/XYZ 70.9 108.3 0]>>
endobj

292 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[385.3 141.7 390.3 155.5]/Dest[16 0 R/XYZ 70.9 96.8 0]>>
endobj

293 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[321.3 714.2 326.3 728]/Dest[19 0 R/XYZ 70.9 119.9 0]>>
endobj

294 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[451.6 619.4 456.6 633.2]/Dest[19 0 R/XYZ 70.9 108.3 0]>>
endobj

295 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[294.6 605.6 299.6 619.4]/Dest[19 0 R/XYZ 70.9 96.8 0]>>
endobj

296 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[211.3 580.1 216.3 593.9]/Dest[22 0 R/XYZ 70.9 143 0]>>
endobj

297 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[426.9 304.4 431.9 318.2]/Dest[22 0 R/XYZ 70.9 131.4 0]>>
endobj

298 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[341.3 249.2 349.7 263]/Dest[22 0 R/XYZ 70.9 119.9 0]>>
endobj

299 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[516.5 235.4 524.9 249.2]/Dest[22 0 R/XYZ 70.9 108.3 0]>>
endobj

300 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[320.9 166.4 329.3 180.2]/Dest[22 0 R/XYZ 70.9 96.8 0]>>
endobj

301 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[466.3 656.2 474.7 670]/Dest[25 0 R/XYZ 70.9 119.9 0]>>
endobj

302 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[324.3 642.4 332.7 656.2]/Dest[25 0 R/XYZ 70.9 108.3 0]>>
endobj

303 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[360.2 614.8 368.6 628.6]/Dest[25 0 R/XYZ 70.9 96.8 0]>>
endobj

304 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[403.5 244 411.9 257.8]/Dest[34 0 R/XYZ 70.9 96.8 0]>>
endobj

305 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[306.3 673.1 314.7 686.9]/Dest[40 0 R/XYZ 70.9 166.1 0]>>
endobj

306 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[352.6 673.1 361 686.9]/Dest[40 0 R/XYZ 70.9 154.5 0]>>
endobj

307 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[414.2 673.1 422.6 686.9]/Dest[40 0 R/XYZ 70.9 143 0]>>
endobj

308 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[428.6 385.9 437 399.7]/Dest[40 0 R/XYZ 70.9 131.4 0]>>
endobj

309 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[319.6 372.1 328 385.9]/Dest[40 0 R/XYZ 70.9 119.9 0]>>
endobj

310 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[193 344.5 201.4 358.3]/Dest[40 0 R/XYZ 70.9 108.3 0]>>
endobj

311 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[364.9 277.3 373.3 291.1]/Dest[40 0 R/XYZ 70.9 96.8 0]>>
endobj

312 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[294.3 547.7 302.7 561.5]/Dest[49 0 R/XYZ 70.9 108.3 0]>>
endobj

313 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[117 533.9 125.4 547.7]/Dest[49 0 R/XYZ 70.9 96.8 0]>>
endobj

314 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[84.7 570 93.1 583.8]/Dest[59 0 R/XYZ 70.9 96.8 0]>>
endobj

315 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[109.4 567.7 117.8 581.5]/Dest[62 0 R/XYZ 70.9 119.9 0]>>
endobj

316 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[103.4 296.9 111.8 310.7]/Dest[62 0 R/XYZ 70.9 108.3 0]>>
endobj

317 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[125.3 180 133.7 193.8]/Dest[62 0 R/XYZ 70.9 96.8 0]>>
endobj

318 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[80.7 317 89.1 330.8]/Dest[65 0 R/XYZ 70.9 96.8 0]>>
endobj

319 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[82.7 692.4 91.1 706.2]/Dest[68 0 R/XYZ 70.9 119.9 0]>>
endobj

320 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[84.7 547.9 93.1 561.7]/Dest[68 0 R/XYZ 70.9 108.3 0]>>
endobj

321 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[91.3 456.8 99.7 470.6]/Dest[68 0 R/XYZ 70.9 96.8 0]>>
endobj

322 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[91.2 252.4 99.6 266.2]/Dest[71 0 R/XYZ 70.9 108.3 0]>>
endobj

323 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[189.2 205 197.6 218.8]/Dest[71 0 R/XYZ 70.9 96.8 0]>>
endobj

324 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[306 452.5 314.4 466.3]/Dest[100 0 R/XYZ 70.9 96.8 0]>>
endobj

325 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[107.4 463 115.8 476.8]/Dest[103 0 R/XYZ 70.9 108.3 0]>>
endobj

326 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[225.9 144.5 234.3 158.3]/Dest[103 0 R/XYZ 70.9 96.8 0]>>
endobj

327 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[420 597.3 428.4 611.1]/Dest[106 0 R/XYZ 70.9 119.9 0]>>
endobj

328 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[506.9 597.3 515.3 611.1]/Dest[106 0 R/XYZ 70.9 108.3 0]>>
endobj

329 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[264 137.3 272.4 151.1]/Dest[109 0 R/XYZ 70.9 96.8 0]>>
endobj

330 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[265.3 672.8 273.7 686.6]/Dest[114 0 R/XYZ 70.9 119.9 0]>>
endobj

331 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[484.2 672.8 492.6 686.6]/Dest[114 0 R/XYZ 70.9 108.3 0]>>
endobj

332 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[195.7 295.6 204.1 309.4]/Dest[114 0 R/XYZ 70.9 96.8 0]>>
endobj

333 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[302.3 414.6 310.7 428.4]/Dest[117 0 R/XYZ 70.9 108.3 0]>>
endobj

334 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[361.6 294.2 370 308]/Dest[117 0 R/XYZ 70.9 96.8 0]>>
endobj

335 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[253.6 222.2 262 236]/Dest[130 0 R/XYZ 70.9 96.8 0]>>
endobj

336 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[119.7 601.1 128.1 614.9]/Dest[163 0 R/XYZ 70.9 119.9 0]>>
endobj

337 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[495.5 553.7 503.9 567.5]/Dest[163 0 R/XYZ 70.9 108.3 0]>>
endobj

338 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[86 479 94.4 492.8]/Dest[163 0 R/XYZ 70.9 96.8 0]>>
endobj

339 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[261.6 636.7 271.2 650.5]/Dest[168 0 R/XYZ 70.9 96.8 0]>>
endobj

340 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[377.6 381.4 386 397.2]/Dest[185 0 R/XYZ 70.9 108.3 0]>>
endobj

341 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[440.6 381.4 449 397.2]/Dest[185 0 R/XYZ 70.9 96.8 0]>>
endobj

342 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[178.3 664.8 186.7 678.6]/Dest[188 0 R/XYZ 70.9 131.4 0]>>
endobj

343 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[377.9 490.8 386.3 506.6]/Dest[188 0 R/XYZ 70.9 119.9 0]>>
endobj

344 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[472.4 463.2 480.8 477]/Dest[188 0 R/XYZ 70.9 108.3 0]>>
endobj

345 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[526.2 413.8 534.6 429.6]/Dest[188 0 R/XYZ 70.9 96.8 0]>>
endobj

346 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[358.3 496.8 366.7 510.6]/Dest[196 0 R/XYZ 70.9 119.9 0]>>
endobj

347 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[372.2 435.6 380.6 449.4]/Dest[196 0 R/XYZ 70.9 108.3 0]>>
endobj

348 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[479.8 435.6 488.2 449.4]/Dest[196 0 R/XYZ 70.9 96.8 0]>>
endobj

349 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[420 712.2 428.4 728]/Dest[199 0 R/XYZ 70.9 108.3 0]>>
endobj

350 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[377.3 690.4 385.7 706.2]/Dest[199 0 R/XYZ 70.9 96.8 0]>>
endobj

351 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[484.6 608.6 493 622.4]/Dest[202 0 R/XYZ 70.9 189.2 0]>>
endobj

352 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[108.7 594.8 117.1 608.6]/Dest[202 0 R/XYZ 70.9 177.6 0]>>
endobj

353 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[373.9 561.2 382.3 575]/Dest[202 0 R/XYZ 70.9 166.1 0]>>
endobj

354 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[94.4 547.4 102.8 561.2]/Dest[202 0 R/XYZ 70.9 154.5 0]>>
endobj

355 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[114.7 506 123.1 519.8]/Dest[202 0 R/XYZ 70.9 143 0]>>
endobj

356 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[330.3 486.2 338.7 500]/Dest[202 0 R/XYZ 70.9 131.4 0]>>
endobj

357 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[494.5 458.6 502.9 472.4]/Dest[202 0 R/XYZ 70.9 119.9 0]>>
endobj

358 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[282 356 290.4 369.8]/Dest[202 0 R/XYZ 70.9 108.3 0]>>
endobj

359 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[417.9 322.4 426.3 336.2]/Dest[202 0 R/XYZ 70.9 96.8 0]>>
endobj

360 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[330.6 587.8 339 601.6]/Dest[205 0 R/XYZ 70.9 131.4 0]>>
endobj

361 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[193 546.4 201.4 560.2]/Dest[205 0 R/XYZ 70.9 119.9 0]>>
endobj

362 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[249 518.8 257.4 532.6]/Dest[205 0 R/XYZ 70.9 108.3 0]>>
endobj

363 0 obj
<</Type/Annot/Subtype/Link/Border[0 0 0]/Rect[365.9 518.8 374.3 532.6]/Dest[205 0 R/XYZ 70.9 96.8 0]>>
endobj

506 0 obj
<</Type/Catalog/Pages 364 0 R
/OpenAction[1 0 R /XYZ null null 0]
/Outlines 422 0 R
/Lang(en-US

system. However only very few of them can provide the necessary support required for
DVD authoring. Additionally, I have been careful about the different licenses that these
libraries have and if they are compatible with Mistelix license.

• Making sense of the DVD standards . There are many DVD standards ranging from different
physical disc formats to different encoding mechanisms to store video and audio. Selecting
the appropriate formats and parameters to use to make sure that the produced DVD can be
played in the larger number of DVD players has represented lots of work.

• Understanding Gstreamer . Gstreamer is a complex and very large multimedia infrastructure.
A part of the documentation available in their site72, there is very little additional
documentation. For example, there are no books available or advanced tutorials.
Additionally, some of the more than 1.000 plug-ins available are very poorly documented,
including gst-ffmpeg73 that Mistelix uses. To overcome this limitation, I have invested many
hours browsing and analyzing the Gstreamer source code and analyzing how some open
source applications like Banshee74 audio player or Totem75 video player use it.

• Legal issues . As mention during the project, to overcome possible patent claims has been
one of the challenges of this project. It could affect its distribution and have legal
consequences for its developers and users. Finally, I have crafted a distribution strategy that
minimizes the rights of patents claims and that has been acknowledged by Software
Freedom Law Center as one of the most low risk strategies possibles.

• Feature set and user interface . The DVD Video standard offers many features. To select a
small set of features that can be delivered with an easy a solid user interface has proved to
be not trivial. Focusing on the use cases of authoring DVD slideshows and videos using a
modern drag and drop interface I think has been the right option.

On lessons learned
Despite the fact that I already had experience on some of the following areas, this project has
helped me to consolidate or learn new things in the following areas:

• How to design and plan a full development. Mistelix represents a complete software
project, covering a full development cycle, including functional description, architecture,
implementation or the deployment among users.

• What is the the state of art of the multimedia frameworks for Linux. As mentioned
before, there are many multimedia frameworks, understand which frameworks exist and
which functionality they provide.

• Understand better Microsoft .Net framework and C#. This actually a platform that is not
learned during the studies at UOC, since the teaching focuses on the Java platform. It is
always good to extend or enhance your knowledge to other platforms.

• More experience with open source tools. Work with the most common open source

72 http://gstreamer.freedesktop.org/
73 http://gstreamer.freedesktop.org/modules/gst-ffmpeg.html
74 http://banshee-project.org/
75 http://projects.gnome.org/totem/

57/59

http://projects.gnome.org/totem/
http://banshee-project.org/
http://gstreamer.freedesktop.org/modules/gst-ffmpeg.html
http://gstreamer.freedesktop.org/

libraries, tools and frameworks is an enriching experience that I can apply to my day per day
job or future jobs.

On future development
On top of overcome these challenges and the learning experience, I think that is also important to
highlight that this project will be developed further and it will be made available to the GNU/Linux
community.

To make this happen, further work will be carried developing the program, packing it for different
GNU/Linux distributions to easy its dissemination and installation. The current plan is to publish
Mistelix version 0.1 during May 2009.

58/59

9. Bibliography
This is the list of books used during this project

Taylor, Jim; Johnson, Mark, Crawford Charles. DVD demystified (third edition). McGraw Hill
2006.

Taylor, Jim; Johnson, Mark, Crawford Charles. High Definition DVD handbook. McGraw Hill
2007.

Lirio, Antonio. Adobe Encore DVD 2.0. Anaya 2006.

Albahari, Joseph. C# 3.0 in a Nutshell: A Desktop Quick Reference. O'Reilly 2007.

59/59

	1. Introduction
	1.1 Introduction
	1.2 Objectives and scope
	1.3 Open source
	1.4 Project justification
	1.5 Project deliverables
	1.6 Project risks
	1.7 Project plan
	1.8 Installation

	2. Technologies
	2.1 The DVD standard
	2.2 DVD disc physical standards
	2.3 DVD Video
	2.3.1 Features
	2.3.2 Technical characteristics

	2.4 Platform
	2.4.1 Mono
	2.4.2 Mono.Addins
	2.4.3 Autoconf and automake
	2.4.4 MonoDevelop IDE

	2.5 User interface libraries
	2.5.1 GTK
	2.5.2 Cairo
	2.5.3 Glade
	2.5.4 Gettext

	2.6 Multimedia libraries
	2.6.1 GStreamer
	2.6.2 ffmpeg

	2.7 External tools
	2.7.1 Dvdauthor
	2.7.2 Spumux

	3. System Analysis
	3.1 Uses cases
	3.1.1 Creating slideshow photo DVD
	3.1.2 Modifying an already existing slideshow
	3.1.3 Creating a DVD with recorded videos
	3.1.4 Creating a DVD with slideshows and recorded videos
	3.1.5 A user wants to translate the application
	3.1.6 A user wants to extend the application.

	3.2 Functional requirements
	3.3 Non-functional requirements

	4. Application architecture
	4.1 Components description
	4.1.1 Library usage description
	4.1.2 External tools usage description

	4.2 libmistelix
	4.2.1 General overview
	4.2.2 Mistelixvideo source GStreamer pluggin
	4.2.3 Communication between Mistelix and the multimedia stack

	4.3 Background process scheduler
	4.4 Themes
	4.5 Extending the application
	4.5.1 Introduction
	4.5.2 What can be extended
	4.5.3 Anatomy of an extension

	4.6 Translations

	5. User interface design
	5.1 User interface description
	5.2 Creating a new project
	5.3 Adding a slideshow
	5.4 Adding videos
	5.5 Selecting a theme
	5.6 Authoring the menus
	5.7 Building the project
	5.8 Preferences
	5.9 Extensions

	6. Implementation
	6.1 Project hosting
	6.2 Statistics from Ohloh
	6.3 Mistelix classes
	6.3.1 Mistelix.Datamodel namespace
	6.3.2 Mistelix.Widgets namespace
	6.3.3 Mistelix.Dialogs namespace
	6.3.4 Mistelix.Backends namespace

	7. Further development and plans
	7.1 Publishing Mistelix 0.1
	7.1.1 Software enhancements
	7.1.2 Packaging
	7.1.3 Mistelix.org web site
	7.1.4 Legal strategy

	7.2 Future versions (beyond 0.1)

	8. Conclusions
	9. Bibliography

